SCI期刊

自然和社会中的分数复杂几何模式和缩放杂志

所属分类:SCI期刊

Fractals-complex Geometry Patterns And Scaling In Nature And Society期刊基本信息

Fractals-complex Geometry Patterns And Scaling In Nature And Society
期刊简称

FRACTALS

期刊ISSN

0218-348X

影响因子

2.971

是否SCI

SCI、SCIE

是否开源

No

出版地

SINGAPORE

审稿周期

Quarterly

创刊年份

1993

研究方向

数学

Fractals-complex Geometry Patterns And Scaling In Nature And Society中文介绍

《Fractals-complex Geometry Patterns And Scaling In Nature And Society》是一本由WORLD SCIENTIFIC PUBL CO PTE LTD出版商出版的专业数学期刊,该刊创刊于1993年,刊期Quarterly,该刊已被国际权威数据库SCI、SCIE收录。在中科院最新升级版分区表中,该刊分区信息为大类学科:数学 2区,小类学科:数学跨学科应用 2区;综合性期刊 3区;在JCR(Journal Citation Reports)分区等级为Q1。该刊发文范围涵盖数学跨学科应用等领域,旨在及时、准确、全面地报道国内外数学跨学科应用工作者在该领域取得的最新研究成果、工作进展及学术动态、技术革新等,促进学术交流,鼓励学术创新。2021年影响因子为4.555,平均审稿速度>12周,或约稿。

Fractals-complex Geometry Patterns And Scaling In Nature And Society英文介绍

The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.

Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.

The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.

Fractals-complex Geometry Patterns And Scaling In Nature And Society中科院分区

大类学科 分区 小类学科 分区 Top期刊 综述期刊
数学 2区 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 数学跨学科应用 MULTIDISCIPLINARY SCIENCES 综合性期刊 2区 3区

Fractals-complex Geometry Patterns And Scaling In Nature And Society期刊近9年JCR分区变化趋势

Fractals-complex Geometry Patterns And Scaling In Nature And SocietyJCR分区(JCR2021-2022年分区)

JCR分区等级 JCR所属学科 分区 影响因子
Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Q1 4.555
MULTIDISCIPLINARY SCIENCES Q2

Fractals-complex Geometry Patterns And Scaling In Nature And Society期刊近7年影响因子变化趋势

Fractals-complex Geometry Patterns And Scaling In Nature And Society期刊的CiteScore值(CiteScore2021-2022年CiteScore值)

CiteScore SJR SNIP 学科类别 分区 排名 百分位
6.50 0.639 1.284 大类:Mathematics 小类:Geometry and Topology Q1 1 / 99

99%

大类:Mathematics 小类:Applied Mathematics Q1 39 / 590

93%

大类:Mathematics 小类:Modeling and Simulation Q1 32 / 303

89%

Fractals-complex Geometry Patterns And Scaling In Nature And Society期刊近7年自引率变化趋势